
Technical Advisory on Secure API Development

What is an API?

Application Programming Interfaces (APIs) are software interfaces that facilitate

service communications between two or more applications, enabling developers to

access application functionality and to send and receive data using familiar web

technologies, particularly Hypertext Transfer Protocol (HTTP), JavaScript Object

Notation (JSON), and Extensible Markup Language (XML).

Over the past decade, the growth of API deployments has increased significantly, with

API calls accounting for over 80% of all web traffic. Businesses now rely heavily on

APIs to build their products and services as APIs are rapidly establishing themselves

as the preferred method for building modern applications, especially for mobile devices

and the Internet of Things (IoT).

Why Is API Security Important?

APIs, as the gateway to data and systems, pose an ongoing security concern. This is

particularly so with the increased adoption of APIs that has led to a widened attack

surface, as evidenced by the increase in attacks on API endpoints.

In July 2022, a major social media platform reported a breach that occurred from late

2021 into 2022 and exposed Personally Identifiable Information (PII) of 5.4 million user

accounts. The zero-day API vulnerability allowed attackers to submit an email address

or phone number, verifying that it is associated with the platform’s account, and

retrieving the associated account ID. The retrieved account ID was then used to

scrape for public information, leaving users vulnerable to hacking, targeted phishing

and doxxing. Some of the collected data was sold on the dark web while others were

allegedly released for free.

Purpose of Advisory

Developers play a critical role in API and applications security, and are responsible for

building secure applications and services. The purpose of this advisory is to provide

technical guidance to developers on the secure development of API. The advisory will

cover three main sections, (i) Secure API Design Guidelines, (ii) Secure API

Development and (iii) API Security Testing.

(i) Secure API Design Guidelines

API design involves the collection of planning and architectural decisions that are

made when building an API. This section provides a list of security practices that

developers can keep in mind when designing APIs. With the incorporation of security

considerations into the API software development lifecycle (SDLC), organisations can

reduce the costs associated with responding to threats and patching security

vulnerabilities due to security incidents.

Input Validation

Developers should validate input parameters and use prepared statements,

parameterised queries or stored procedures, for each software function to mitigate

potential attacks like cross-site scripting (XSS) and Structured Query Language (SQL)

injection.

Authentication & Authorisation

Developers should use proven authentication and authorisation mechanisms such as

JSON Web Tokens (JWT) to strictly control access to APIs, as they are critical entry

points to an organisation’s databases.

Encryption

Developers should use Hypertext Transfer Protocol Secure (HTTPS) to ensure all API

traffic is encrypted using Transport Layer Security (TLS) to prevent Man-In-The-Middle

(MITM) attacks, where any intercepted requests or responses are rendered useless

to an attacker without the right decryption method.

Rate Limiting

Developers should conduct rate-limiting to prevent spam behaviours and protect the

API from slow performance when too many services or machines are accessing the

API for malicious purposes (i.e. Distributed Denial of Service).

Threat Modelling

Developers should conduct threat modelling to identify security vulnerabilities in the

API. Threat modelling allows developers to understand and prioritise threats and

vulnerabilities during the planning, design, and implementation of APIs. Developers

can evaluate the risks associated with each threat based on the likelihood of it

occurring, the impact on the system if it does occur, and the ease of exploitation. These

potential vulnerabilities should be surfaced to be fixed.

Code Review

Developers should review the API source code to ensure that it adheres to secure

coding best practices. Code review is essential for detecting and remediating security

vulnerabilities and weaknesses that might be introduced during API development.

Logging and Monitoring Tools

Developers should deploy threat monitoring tools to help track API responses and

performance in real-time to detect any anomalous behaviour that could lead to a

security breach. The log data could also be used to understand the root cause of the

security breach and help in the implementation of any hardening measure.

(ii) Secure API Development

Like any technology, APIs bring about their own unique security challenges and it is

important for developers to consider the following during the development phase of

APIs. In this section, developers can refer to examples of code snippets, for the section

Secure API Design Guidelines.

Usage of JSON Web Token (JWT) for Authentication & Authorisation

Developers can use JWT which is a type of token that is used to authenticate users.

It consists of three parts: header, payload, and signature.

● Header

The header contains information about the type of the token and the algorithm that is

used to generate the signature. The Header parameters used consist of the hashing

algorithm (i.e. HMAC SHA256 or RSA) and the type of the JWT as shown in the

example below.

Header Parameters

● Payload

The payload contains the actual data that is to be passed to the API endpoint. It

contains statements about the entity (typically, the user) and additional entity attributes

known as claims. It is important to include necessary claims such as “Iss”, “Exp” and

“Admin” and validate them to ensure they are not incorrectly modified.

Payload Claims

● Signature

The signature is used to verify the authenticity of the token and ensure that the

message was not changed along the way. The signature is created by taking in the

Base64-encoded header and payload, along with a secret, before being signed with

the algorithm specified in the header.

Base64 Encoding

Input Validation

An example of a PreparedStatement, using Java's implementation of a parameterized

query to execute a database query, is shown below:

Prepared Statements

Encryption

Developers can deploy HTTP with TLS encryption to encrypt/decrypt API requests and

responses to/from web servers by creating Secure Sockets Layer (SSL) certificates

and private keys using a certificate authority, as shown below:

Create SSL Certificate

Developers can configure SSL Certificate for Node.js HTTPS Server as shown in the

example below:

HTTPS Configuration

Rate Limiting

Developers can utilise rate limiting as a powerful yet simple solution to secure backend

APIs from malicious attacks and handle spam requests from users. It controls the rate

at which user requests are being taken in by the server.

An example of rate limiting in Node.js is shown below:

● Use the express-rate-limit npm package to limit API requests from a user

express-rate-limit package

● Update index.js file in the middlewares folder to export the rate limiting

middleware from the middlewares module

index.js

● Import rateLimiterUsingThirdParty middleware and apply it to all application

routes:

rateLimiter routes

(iii) API Security Testing

API Testing is essential to identify potential vulnerabilities and bugs by checking for

security and business logic flaws in an API. Here are three common types of modality

testing:

● Unit testing validates each individual function of the API interface involving

Create, Read, Update, Delete (CRUD) operations. The automation testing can

be performed on JavaScript using the mocha library as shown in the example

below:

Unit testing

● Functional testing focuses mainly on testing basic usability, mainline functions

and ensures the API adheres to security best practices like authentication and

authorisation.

Functional testing

● Load testing is seen as a subset of functional testing and emphasises the

protection of data and resources from attackers. An example of load testing

performed on JavaScript using the k6 library is shown below.

Load testing

An example of a k6 test is conducted with 10 virtual users for a duration of 5

seconds as shown below:

Running k6 test

Logging and Monitoring

Developers can monitor usage patterns to identify any unusual or suspicious usage

patterns, such as repeated requests from a single IP address or an unusual volume of

requests, by keeping a record of all API requests and responses. Developers can use

popular logging libraries tools on web application frameworks (e.g. Node.js) to conduct

activity logging and monitoring.

In the example below, separate loggers are created for different application services,

and it is possible to store them on a “centralised.log” file. The configuration shown

allows for error logs to be displayed to the console and log any activity that are

classified as info level and below, including error and warn logs.

Logging configuration

Penetration Testing

Developers can conduct penetration testing to evaluate API security posture.

Penetration testing involves simulating real-world attacks against APIs and identifying

security vulnerabilities and weaknesses that threat actors can exploit. This allows

developers to remediate security vulnerabilities before they can be exploited by

malicious actors. Developers can engage the assistance of white hat security experts

to conduct penetration testing to ensure a thorough security assessment of APIs.

Conclusion

The implementation and assessment of API security is important for businesses when

building their products and services. Strong API security measures will help deter

attackers from infiltrating a system and reduce associated costs when responding to

security incidents.

References:

https://thehackernews.com/2023/09/how-to-prevent-api-breaches-guide-to.html

https://www.akamai.com/our-thinking/the-state-of-the-internet

https://venturebeat.com/security/twitter-breach-api-attack/

https://threatpost.com/experian-api-leaks-american-credit-scores/165731/

https://onboardbase.com/blog/api-security-best-practices/

https://thehackernews.com/2023/09/how-to-prevent-api-breaches-guide-to.html
https://www.akamai.com/our-thinking/the-state-of-the-internet
https://venturebeat.com/security/twitter-breach-api-attack/
https://threatpost.com/experian-api-leaks-american-credit-scores/165731/
https://onboardbase.com/blog/api-security-best-practices/

